

ADAPTIVE LAUNCH SOLUTIONS

PREPARED BY

Adaptive Launch Solutions 8291 Aero Place, Suite 170 San Diego, CA 92123 United States www.adaptivelaunch.com

COMPANY INFORMATION DUNS #: 06-313-0748 CAGE: 8CW69

Founded: 2010

POINTS OF CONTACT

Phil Smith 858-264-4595 Ext 117 psmith@adaptivelaunch.com Lisa Jacobs 858-264-4595 Ext 116 ljacobs@adaptivelaunch.com

Business Status: USSF/SSC SpEC

Small FAR § 124.1001 and Part 121. Small Disadvantaged Business non-traditional

Multi Award Schedule 47QRAA23D005S SLIN 541420, SLIN 541330, SLIS

Approved for Public Release

Adaptive Launch Solutions

Core Capabilities and Initiatives

ALS-BD-23-004 Rev 05 31 March 2023

Page 1

About Adaptive Launch Solutions (Employee owned, US Corporation)

What we do:

- Aerospace mechanical and avionics design and engineering
- Digital Twins, Immersive Simulations, Integrated Digital Environments \bullet
- Intelligent Models, Machine Learning, Artificial Intelligence
- Qualified flight hardware (mechanical and electrical)
- Analysis and test verification capabilities
- Systems Engineering meeting FAR, MilSTD and NASA STDs
- Launch integration and mission engineering
- Launch campaign integration, test, range, and safety support

How we do it:

- Working relationship with NRO, USSF, NASA and industry
- Strong supply chain and vendor relationships with material suppliers, machine shops and test facilities
- In-depth understanding of government/commercial contracts and finances along with small and large company experience
- FAR § 124.1001 and Part 121. Small Disadvantaged Business

ALS is led by Subject Matter Experts with 30+ years experience mentoring bright highly educated engineers

Core Capabilities and Initiatives ALS-BD-23-004 Rev 05

ALS Digital Engineering Objectives

ALS IDE, ML, and AI Application Pathway

Adding machine learning will make the process more intelligent, increase accurate data and predictions, open up possibilities to discover previously unseen patterns, create a single learning-system that can manage complex data, create predictions for best outcomes in times of crisis, and reach optimal solution pathways

- Digital twins incorporating artificial intelligence (AI) create usable representations of complex systems
- Incorporating rich, diverse data from as many different scenarios as possible
- Test situation and plan systematically
- Provide clear outcomes helping designers understand the requirements faster, that are often hard to perceive beforehand.
- Develop rule sets to improve the digital model by including a human-in-theloop supervised learning
- Build trust into the AI system by working with people, especially in cases where the data can contain a bias or cases that can't be easily learned from the data

Core Capabilities and Initiatives ALS-BD-23-004 Rev 05

How does AI learn

Supervised (deep) learning	Learn from examples
Active learning	Ask for human feedback
ransfer learning	Ability to transfer knowledge from one task to another
Reinforcement learning	Automated feedback (rewards)
Unsupervised learning	Need no feedback
enetic algorithm	Learns from generational evolutions
Fuzzy logic	Classify solutions into range certainties

Digital Rendering and Immersive Digital Environments

Picture of Field Object

Edge Sensor Data Rendered in Real Time to Create Un-manipulated (raw) 3D Digital Object

HKM Enteprises, Inc dba Adaptive Launch Solutions Proprietary Data Under PL 100-679 and/or FAR

Core Capabilities and Initiatives ALS-BD-23-004 Rev 05

Picture of Field Object

Page 4

Digital Twins, Kinematic Models, Machine Learning and Immersive Gaming

Physical World

Integrated Digital Environment

Edge sensors and data **Environment and conditions** Secure, assured data **Intelligent trained models Kinematic models (twins) Test validation**

Immersive Environment

Computer graphics engines Analysis visualization Training **Collaboration**

ALS is using responsible AI to create visualization, training, collaboration, and communication tools rooted in Model Based Systems Engineering, Intelligent Systems, and Immersive Digital Environments

Core Capabilities and Initiatives ALS-BD-23-004 Rev 05

Machine Learning

Design, Engineering, Analysis, Prototype, Build and Field Launch Integratio

Mission Design and Planning

Multi-Mission Carrier (MMC)

- Space Vehicle Data
- o flight readiness data
- National Security priority
- **o SV IRD data**
- o initial End of Life plan data
- Mission Planning
- o launch opportunity data **o LV IRD data** o initial MSPSP data **O Do-No-Harm strawman** o mission planning o intelligent mission planning assistant • Collaboration,

Communication. Training

o digital twins \circ outer space IDE \circ ops simulation (kinematic)

- Requirements • Program requirements **o Industry standards** • Quality Standards • Mechanical Hardware, **Power Control Module & Mech/Electrical GSE** o design, engineering, analysis o specification, build, quality • verification test spec/execution o software design and test
- o component / system end items
- MMC Integration **• EBOM, MBOM, Quality** • IA&T, end item • validation mapping o digital twins **• Build Facility IDE** \circ ops simulations
- Ship to IFS Facility
- o pre-ship review
- o transport

- **Integrated Flight** System (IFS)
- Mission Integration o mission planning **o** MSPSP o LV ICD data ○ IFS V&V, Do-No-Harm \circ IFS digital twins \circ ops simulation (kinematic)
- validation mapping

• Space Vehicle

- o flight readiness tracking **o SV IRD** ○ SV V&V, Do-No-Harm \circ validation mapping
- IFS Integration **• EBOM, MBOM, Ouality** ○ IA&T. end item **o IFS digital twin • IFS Facility IDE** \circ ops simulations \circ validation mapping
- Ship to IPL Facility
- o pre-ship review o transport

Integrated Payloa (IPL) Stack

- Secure SV processing o storage
- o preparation/test
- **o SV Prep Facility IDE**
- Full IPL Stack Mate
- **○IA&T. end item**
- o validation mapping
- IPL digital twin
- **OIPFIDE**
- \circ ops simulation
- Ship to Launch Site
- o pre-ship review
- IPL encapsulation o transport

Overcoming roadblocks and filling gaps in the enterprise resource planning roadmap

Core Capabilities and Initiatives ALS-BD-23-004 Rev 05

n Services		

Leadership Team

-	Lisa Jacobs (TS/SCI)Chief Operating Officer	
	B.S. Special Education, Certificates in Cost Estimating and Contracts & Acquisition Management	
	35 yrs' in aerospace contracts, subcontracts, intellectual property, and business operations	
	Jack Rubidoux (S) Director, Security	
1251	B.A. Social Sciences, Certificates in Cost/Price Analysis and Government Contract Law	
	30 yrs' in aerospace business/proposal/estimate development, contracts/subcontracts, and security	
6	Philip Smith P.E. CEO and Director Business Development	
	B.S. Civil Engineering, M.S. Structural Mechanics, CA Registered Engineer, AIAA Associate Fellow	
	30 yrs' in aerospace business and program management, SmallSat multi-manifest systems engineering	
	Ronald Stoneburner Business Management / Contracts / Strategic Planning	
Sec.	B.S. Production Management, M.B.A. Business Administration, Certificates in Government Contracts	
	40 yrs' in aerospace contracts, joint ventures, mergers, acquisitions, and intellectual property rights	
TIM	Claudia von Wilpert Chief Financial Officer	
	B.A. Business Administration, M.B.A. Finance	
The	40 yrs' in cost accounting, government reporting, personnel administration and tax planning	
Lt. Col. Robert Atkins (Retired) ALS Advisor		
	Experience includes C2 Systems, SATCOM Systems, Minuteman III ICBM Systems, NRO Satellites,	
	Vehicles, Major Range and Test Facility Base Capabilities, Remote Sensing Satellites, and Space Domain	

Core Capabilities and Initiatives ALS-BD-23-004 Rev 05

Leadership Team Continued

Anthony KyriakidisDirector Mission Integration and AnalysisB.S. Mechanical Engineering 30 yrs' in LV design, analysis, manufacturing and design of propellant feedlines, light weight fabrication
James ParraDirector Design and ManufacturingB.S. Engineering Technology40 yrs' in space Launch Vehicle component design, manufacturing, tooling and test production operation
Jay Stoneburner (S)Chief Technical OfficerB.S. Systems Engineering, MBA Business Administration35 yrs' in aerospace program management, systems engineering, flight operations, safety, and productio
Gerald Szatkowski Ph.D.Avionics and Space Vehicle SpecialistB.S. Mech Engineering, M.E. Electrical Engineering, M.S. Systems Engineering, M.S. Industrial Mgmt, 40 yrs' in aerospace SmallSat multi-manifest and Systems, Launch Vehicle Integration; and Mission Op
Larry MercerMachine Learning – ALS AdvisorB.S. Physics/Mathematics, M.S. Computer Science40 years smart real-time mfg systems, C2 systems, first genetic learning, fuzzy logic reasoning/association

Core Capabilities and Initiatives ALS-BD-23-004 Rev 05

and high energy upper stage tanks

ns and manufacturing

n operations

Ph.D. Engineering Science erations & Telemetry

ve memory, and geo-spatial tools

San Diego Avionics Design and Assembly Facility

- 6,000 sqft with 20ft ceiling height
 - 1,500 sqft Receiving and Storage
 - 2,000 sqft Clean Room facility
 - 2,500 sqft Offices and meeting rooms
 - Video conferencing
- ISO-8 Clean Room (transition to ISO-7)
 - Mechanical assembly, fit-checks, system assembly, and operation verifications
 - Avionics assembly and checkout
- Cybersecurity CMMC (Jan 20) requirement Level 3; NIST.SP.800-171r2 (CUI)
- JCP DD2345 certification
- Secure peer to peer WAN

Core Capabilities and Initiatives ALS-BD-23-004 Rev 05

(Ready) (Complete) (can be expanded in CONUS)